
Fundamentals of Nuclear Engineering

Module 4: Nuclear Fuels, Neutron Sources, Neutron Absorbers, Neutron Poisons

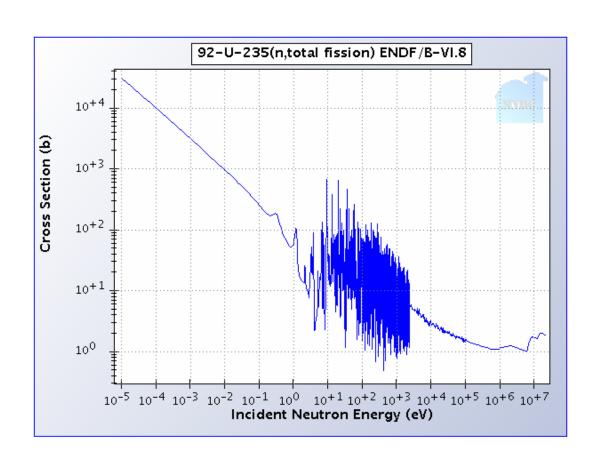
Dr. John H. Bickel

Objectives:

Identify key *isotopes, reactions, reaction rates* important to initiating and control of nuclear reactions, including:

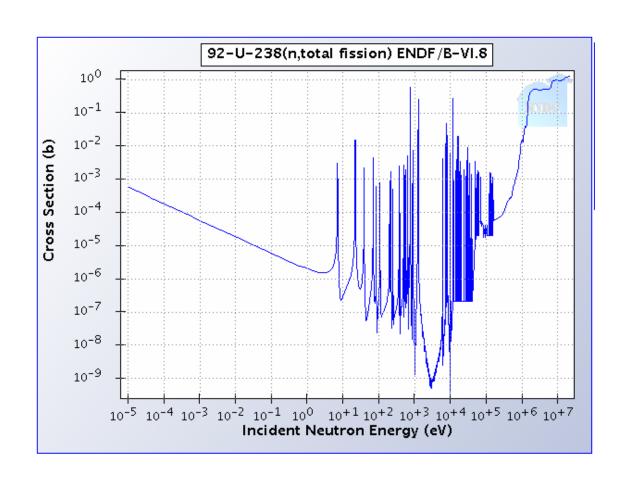
- 1. Key fissionable isotopes
- 2. Key neutron sources
- 3. Key neutron absorber materials used for control
- 4. Key neutron poisons arising from fission product decay

Fissionable Isotopes

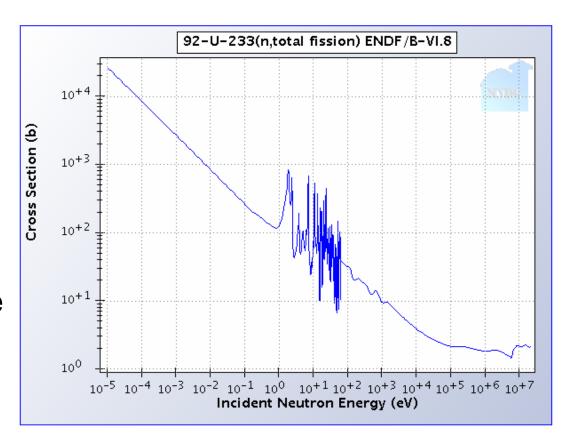

Isotopes Fissionable by Thermal Neutrons

- Many isotopes are capable of undergoing spontaneous fission and energy release
- For controlled chain fission reaction interest is isotopes with: long decay half-life: $t_{1/2}$, low spontaneous fission branching: α_f , and high thermal neutron fission rate: σ_{f-th}
- Thermal averaged cross section σ_{f-th} is computed by averaging $\sigma_f(E)$ over thermal neutron energy distribution $\varphi_{th}(E)$ essentially a Maxwell-Boltzmann distribution

$$\sigma_{f-th} = \frac{\int_{0}^{\infty} \sigma_{f}(E) \phi_{th}(E) dE}{\int_{0}^{\infty} \phi_{th}(E) dE}$$


U²³⁵ Fission

- $t_{1/2} = 7.038 \times 10^8 \text{ yrs}$
- Spontaneous fission rate: $\alpha_{sf} = 7.0 \times 10^{-9}$
- $\sigma_{f-th} = 577 \ barns$
- U²³⁵ yields ~2.43 neutrons/fission
- U^{235} naturally occurring
- Relative abundance 0.72%

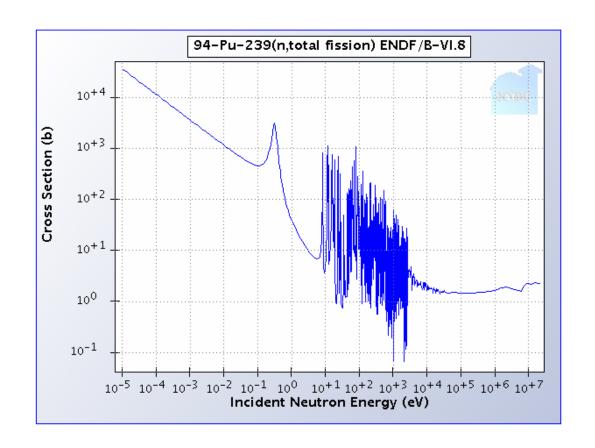

U²³⁸ Fission

- $t_{1/2} = 4.468 \times 10^9 \text{ yrs}$
- Spontaneous fission rate: $\alpha_{sf} = 5.5 \times 10^{-5}$
- $\sigma_{f-th} \sim 10^{-5} \ barns$
- Fast neutron fission rate is higher
- Overall U^{238} fission rate is small compared to U^{235}
- $\sigma_{f-f} \sim 0.5 \ barns$
- *U*²³⁸ naturally occurring
- Relative abundance 99.2745%

U²³³ Fission

- $t_{1/2} = 1.592 \times 10^5 \text{ yrs}$
- Spontaneous fission rate: $\alpha_{sf} < 6.0 \times 10^{-11}$
- $\sigma_{f-th} = 527 \ barns$
- U^{233} yields ~2.48 neutrons/fission
- U^{233} is artificial isotope from Th^{232} neutron capture.

U²³³ Origins


• U^{233} is produced via following conversion chain from Th^{232} :

$$n + {}^{232}_{90}Th \rightarrow {}^{233}_{90}Th \rightarrow {}^{233}_{91}Pa + e^- + \bar{\nu}_e$$

$${}^{233}_{91}Pa \rightarrow {}^{233}_{92}U + e^- + \bar{\nu}_e$$

- Recent interest in U^{233} fission is due to non-proliferation, waste management considerations
- Thorium ore is 3x more plentiful than Uranium
- Large deposits exist in India, Canada, Norway

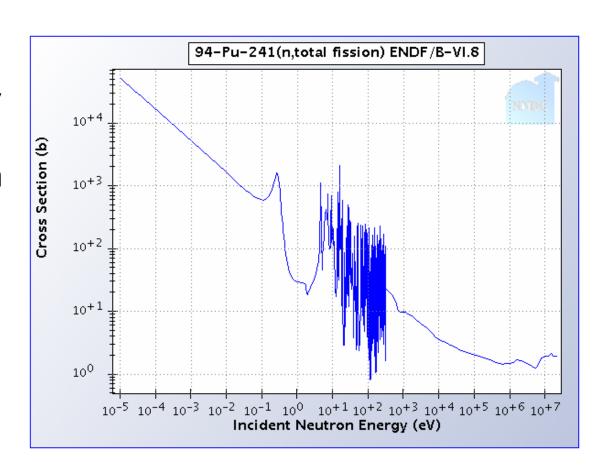
Pu²³⁹ Fission

- $t_{1/2} = 2.411 \times 10^4 \text{ yrs}$
- Spontaneous fission rate: $\alpha_{sf} = 3.0 \times 10^{-10}$
- $\langle \sigma_f \rangle_{th} = 742 \ barns$
- Pu²³⁹ yields ~2.87 neutrons/fission
- Pu^{239} is produced via U^{238} neutron capture

Pu²³⁹ Origins

• Pu^{239} is produced via following conversion chain from U²³⁸:

$$g_2 U^{238} + n \Rightarrow g_2 U^{239} + V$$


$$g_2 U^{239} \Rightarrow g_3 N p^{239} + e^{-}$$

$$g_3 N p^{239} \Rightarrow g_4 P u^{239} + e^{-}$$

- Pu^{239} is produced in any light water reactor using lightly enriched U^{235} Uranium
- Fission of Pu^{239} contributes significantly to power production at end of reactor fuel cycle as U^{235} is consumed

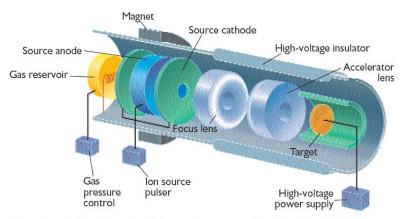
Pu²⁴¹ Fission

- $t_{1/2} = 14.35 \text{ yrs}$
- Very strong β-decay source
- Spontaneous fission rate: $\alpha_{sf} = 2.4 \times 10^{-14}$
- $\sigma_{f-th} = 1025 \ barns$
- Pu²⁴¹ primarily produced via neutron capture

Three isotopes with desired properties:

- *U*²³⁵
- *U*²³³
- Pu^{239}

 All others found to: decay too quickly, have large spontaneous fission branching ratios, or too low a thermal neutron cross section.

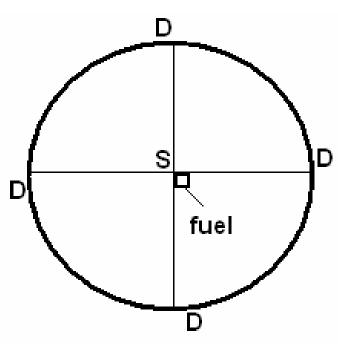

Neutron Sources

Neutrons can be generated by:

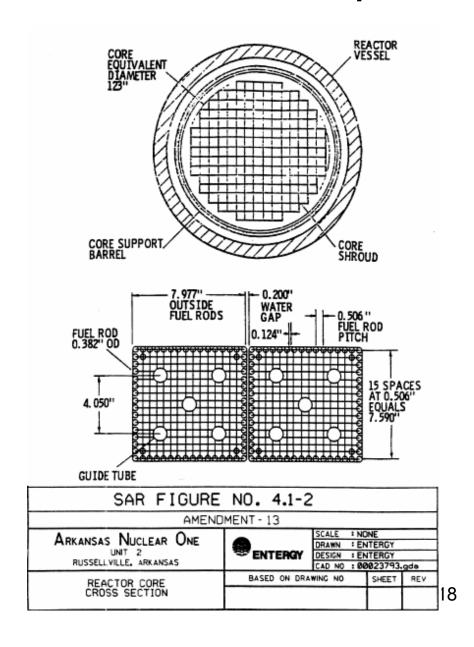
- (α,n) reaction from Radium α -particles hitting Beryllium and generating neutrons via: $Be^9(\alpha,n)C^{12}$ (Chadwick 1932)
- Spontaneous fission neutrons —reliance on random U^{235} fission neutrons for chain reaction initiation is *not desirable*
- Cf^{252} spontaneous fission neutrons (1µg Cf^{252} = 2.8·10⁶ n/sec)
- Steady neutron source needed to initiate controlled chain fission reaction in <u>fresh</u> Uranium or Plutonium based fuel
- Radioactive sources via α-decay bombardment: Ra-Be, Ra-B, Ra-F, Po-Be, Pu-Be)
- Photo-neutron reactions: $Be^9(\gamma,n)Be^8$ with $E\gamma > 1.6MeV$, $H^2(\gamma,n)H^I$ with $E\gamma > 2.23MeV$
- Fusion reactions: $H^2(H^2,n)H^3$ (pulsed portable n-generators)

Portable Neutron Generators

- Essentially miniature accelerator for producing fusion neutrons
- Used in laboratory and field survey applications
- 1.5·10⁸ neutrons/sec at 14MeV
- 20 -250 kHz pulse rate
- Weight: ~ 25lbs
- Not used for reactor startup


Schematic design of a sealed-tube neutron generator with a Penning ion source.

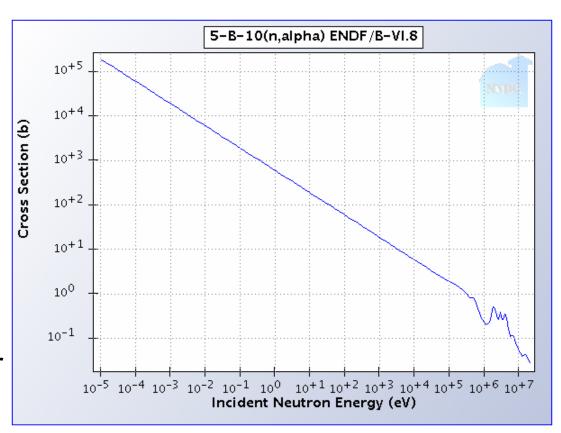
Possible (α,n) Sources for Reactor Startup


- 1 Cu Ra^{226} - Be^9 source capable of 1.0-1.5 x 10⁶ neutrons/sec
- Disadvantage: Ra^{226} - Be^9 source has large γ source from Ra decay products.
- 1 Cu Po^{210} - Be^9 source capable of ~ 2.8 x 10⁶ neutrons/sec without excessive γ production.
- Disadvantage: *Po*²¹⁰ scarcity.
- Pu^{239} - Be^9 source produces ~5 MeV neutrons in quantities of: 57.2 neutrons/10⁶ α absorbed, without excess γ production
- Disadvantage: Pu^{239} is fissionable, has large σ_{f-th} .
- Am^{241} - Be^9 source produces ~5 MeV neutrons in quantities of: 71.5 neutrons/10⁶ α absorbed but has small σ_{f-th}
- Pu^{239} - Be^9 and Am^{241} - Be^9 sources (>10⁶ neutrons/sec) used for initial reactor startup with fresh fuel
- Source is placed in spare instrument slot in first fuel bundle inserted to reactor

Neutron Source for Initial Startup

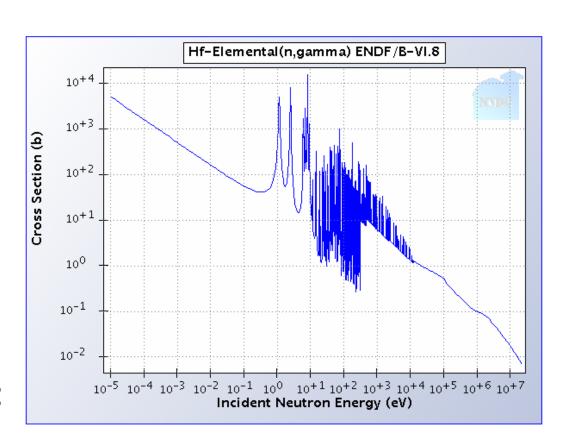
S - Neutron Source

D - Neutron Detector

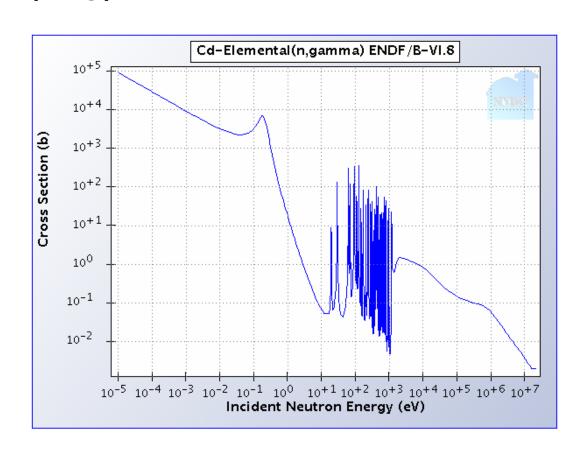

Neutron Absorbers

Neutron Absorbers Are Used to Control Nuclear Chain Reaction

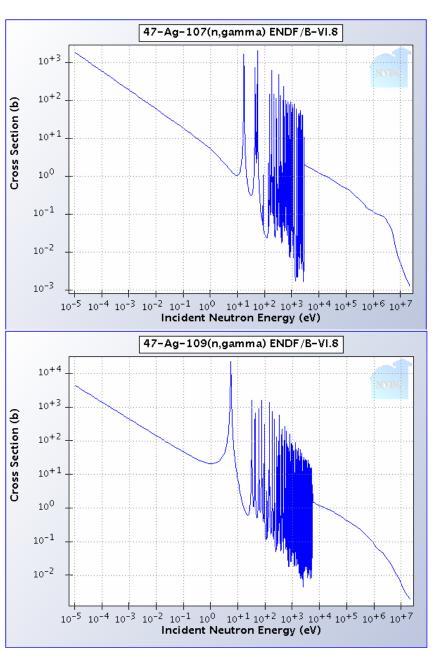
- Key requirements for neutron absorber materials:
- Large neutron capture cross section σ_{c-th} for either (n,γ) or (n,α) type reactions
- Materials suitability for withstanding long term radiation exposure/damage and heat transfer


$B^{10}(n,\alpha)Li^7$ Reaction

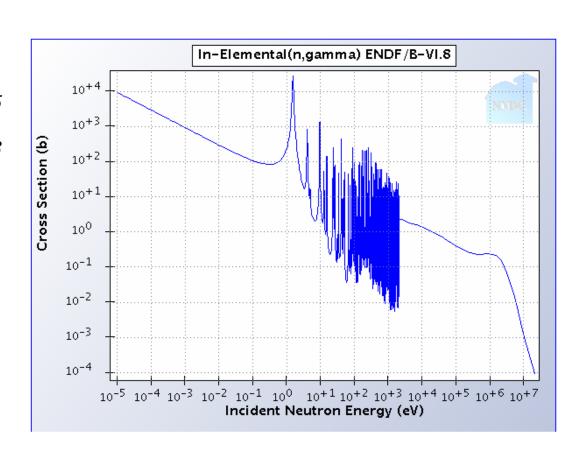
- $\sigma_{c-th} = 3813 \ barns$
- Typical material is Boron Carbide (B_4C)
- B_4C Melting point is: 2350°C (4262°F)
- *Li*⁷ is non-radioactive
- Natural Boron is 19.9% B^{10} , 80.1% B^{11}
- B^{11} very weak absorber $\sigma_{c\text{-th}} < 0.05 \ barns$
- Natural Boron (B^{10} , B^{11}) $\sigma_{c-th} = 755 \ barns$
- Boric Acid and Sodium Pentaborate solutions


$Hf^{x}(n,\gamma)Hf^{x+1}$ Reactions

- $\sigma_{c-th} = 105 \ barns$
- Elemental Halfnium is:
 - 35.100% Hf¹⁸⁰
 - 27.297% Hf¹⁷⁸
 - 18.606% Hf¹⁷⁷
 - 13.629% Hf¹⁷⁹
 - 5.206% Hf¹⁷⁶
 - 0.162% Hf¹⁷⁴
- Halfnium melting point is: 2233°C (4051°F)
- Commonly used in Naval Reactors


Cadmium (n, y) Reactions

- $\sigma_{c-th} = 2450 \ barns$
- Elemental Cadmium is:
 - 28.73% Cd¹¹⁴
 - 24.13% Cd¹¹²
 - 12.80% Cd¹¹¹
 - 12.49% Cd¹¹⁰
 - 12.22% Cd¹¹³
 - 7.49% Cd¹¹⁶
 - 1.25% Cd¹⁰⁶
 - 0.89% Cd¹⁰⁸
- Melting Point is 321°C (609.9°F)
- Cadmium was used in first reactor (CP-1)


Silver (n, y) Reactions

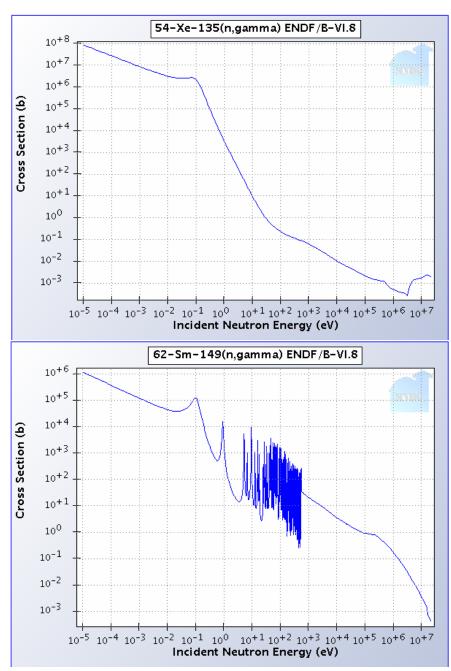
- Elemental Silver is:
 - 51.839% Ag¹⁰⁷
 - 48.161% Ag¹⁰⁹
- Natural Silver (Ag^{107}, Ag^{109}) $\sigma_{c-th} = 63 \ barns$
- Capture in resonance region is very large
- Melting Point is 961°C (1763°F)

Indium (n, y) Reactions

- Elemental Indium is:
 - 95.7% In¹¹⁵
 - 4.3% In¹¹³
- $\sigma_{c-th} = 191 \ barns$
- Capture in resonance region is very large
- Melting Point is 156.6°C (313.88°F)

Silver-Indium-Cadmium Alloy

- Due to earlier unavailability of metallic Halfnium, an alloy of Silver-Indium-Cadmium was proposed as Civilian alternative
- Alloy mixture: 80% Silver, 15% Indium, 5% Cadmium


•
$$\sigma_{c-th} = 0.8 \ \sigma_{c-thAg} + 0.15 \ \sigma_{c-thIn} + 0.05 \ \sigma_{c-thCd}$$

= $0.8(63 \ barns) + 0.15(191 \ barns) + 0.05(2450 \ barns)$
= $201.55 \ barns$

 Alloy mixture has similar nuclear absorption in thermal and resonance regions, but still has relatively low melting point

Fission Product Neutron Poisons

Certain Fission Products are Neutron Absorbers

- Majority of fission products have low neutron capture cross sections
- Two major exceptions:
- Xe^{135} $\sigma_{c-th} = 2.7x10^6 \ barns$
- $Sm^{149} \sigma_{c-th} = 5.85 \times 10^4 \ barns$
- Because capture cross sections are large:
- Need to understand:
- Build-up, burn-up, decay physics of these fission products

Xe¹³⁵ Poisoning

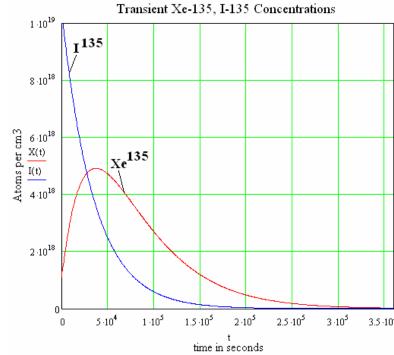
- Xe^{135} is direct U^{235} fission product (yield: $\gamma_{Xe} = 0.003$)
- Xe^{135} also produced via Te^{135} decay which is a fission product of U^{235} (yield: $\gamma_{Te} = 0.061$)
- Decay scheme is as follows:

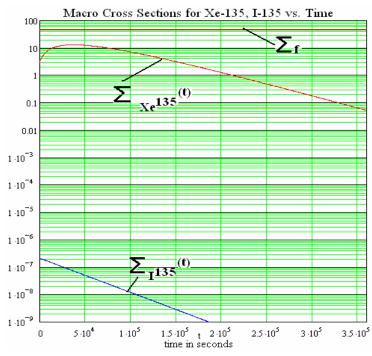
• Thus: system of build-up caused by fission rate, decay, and possibly burn-up of Xe^{135} via neutron capture exists

- Fission rate: $\varphi_{th} \Sigma_{f-th}$
- Direct production of I^{135} via fission: $\gamma_{Te} \varphi_{th} \Sigma_{f-th}$
- Elimination of *I*¹³⁵ via neutron capture: <u>negligible</u>
- Elimination of I^{135} via decay: $-\lambda_I I(t)$ (I(t) is I^{135} concentration)
- Direct production of Xe^{135} via fission: $\gamma_{Xe} \varphi_{th} \Sigma_{f-th}$
- Production of Xe^{135} via decay of I^{135} : $\lambda_I I(t)$
- Elimination of Xe^{135} via decay: $-\lambda_{Xe}Xe(t)$ $(Xe(t) \text{ is } Xe^{135} \text{ conc.})$
- Elimination of Xe¹³⁵ via neutron capture is: $-\phi_{th}\sigma_{c-th}Xe(t)$
- This yields following linear system of equations:

$$dI/dt = \gamma_{Te} \, \boldsymbol{\varphi}_{th} \, \boldsymbol{\Sigma}_{f-th} - \boldsymbol{\lambda}_{I} \, I(t)$$

$$dXe/dt = \gamma_{Xe} \, \boldsymbol{\varphi}_{th} \, \boldsymbol{\Sigma}_{f-th} + \boldsymbol{\lambda}_{I} \, I(t) \, - \boldsymbol{\varphi}_{th} \, \boldsymbol{\sigma}_{c-th} \, X(t) - \boldsymbol{\lambda}_{Xe} \, Xe(t)$$


• Under equilibrium conditions (constant φ_{th}):


$$dI/dt = 0 = \gamma_{Te} \, \varphi_{th} \, \Sigma_{f-th} - \lambda_I \, I(\infty)$$
 thus: $I(\infty) = \gamma_{Te} \, \varphi_{th} \, \Sigma_{f-th} / \lambda_I$ $dXe/dt = 0 = \gamma_{Xe} \, \varphi_{th} \, \Sigma_{f-th} + \lambda_I \, I(t) - \varphi_{th} \, \sigma_{c-th} \, Xe(\infty) - \lambda_{Xe} \, Xe(\infty)$

- Thus: $Xe(\infty) = [\gamma_{Xe} \varphi_{th} \Sigma_{f-th} + \lambda_I I(\infty)] / [\varphi_{th} \sigma_{c-th} + \lambda_{Xe}]$ = $\varphi_{th} \Sigma_{f-th} [\gamma_{Xe} + \gamma_{Te}] / [\varphi_{th} \sigma_{c-th} + \lambda_{Xe}]$
- If flux is constant, equilibrium Xe^{135} concentration reached
- When: $\lambda_{Xe} << \varphi_{th} \sigma_{c-th}$ $or: \varphi_{th} >> \lambda_{Xe} / \sigma_{c-th}$
- This is true when: $\varphi_{th} >> (0.693/t_{1/2})/\sigma_{c-th}$ $\varphi_{th} >> (0.693/(6.7hrs \cdot 3600sec/hr))/(2.6 \cdot 10^6 \ barns \cdot 10^{-24}cm^2/barn)$ $\varphi_{th} >> 1.1 \cdot 10^{13} \ neutrons/sec. \ cm^2$
- Commercial power reactors operate exactly in this range! 31

- Exact steady state buildup of Xe can be predicted from physics parameters independent of neutron flux level
- $Xe(\infty) = \sum_{f-th} [\gamma_{Xe} + \gamma_{Te}] / \sigma_{c-th}$
- Using numbers: $\Sigma_{f\text{-}th} = 48.7 \ cm^{-1}$, $\gamma_{Xe} = 0.003$, $\gamma_{Te} = 0.061$, $\sigma_{c\text{-}th} = 2.7x10^6 \ barns \ x \ 10^{-24} cm^2/barn = 2.6 \ x 10^{-18} cm^2$
- Then: $Xe(\infty) = 1.1 \times 10^{18} \text{ atoms/cm}^3$
- What happens if after large flux level achieved, it suddenly disappears?

- Thermal flux: $\varphi_{th} \approx 10^{14}/cm^2 sec$
- $I(\infty) = 1x10^{19} \text{ atoms/cm}^3$ $Xe(\infty) = 1.1x10^{18} \text{ atoms/cm}^3$
- Thermal flux drops to: 0/cm² sec
- I¹³⁵ production ceases and begins to decay away
- Xe^{135} production from fission ceases but production from I^{135} decay continues
- Removal of Xe¹³⁵ by neutron capture ceases, but decay continues
- Xe^{135} reaches peak concentration of $4.4x10^{18}$ atoms/cm³ at ~11.6 hrs
- Xe¹³⁵ competes with fission

Sm¹⁴⁹ Poisoning

- Sm^{149} is stable isotope produced via decay from Pm^{149} , which is from fission product: Nd^{149} (U²³⁵ yield: $\gamma_{Nd} = 0.011$)
- Decay scheme is as follows:

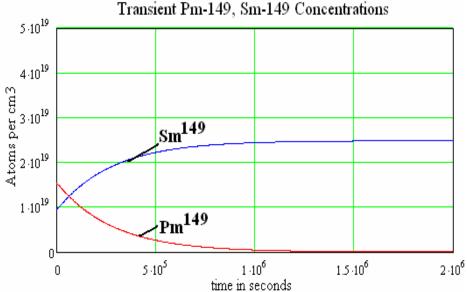
- Sm^{149} with $\sigma_{c-th} = 5.85x10^4$ barns, can only be removed by burning it up with thermal neutrons
- System of equations governing Sm^{149} build-up/decay is:

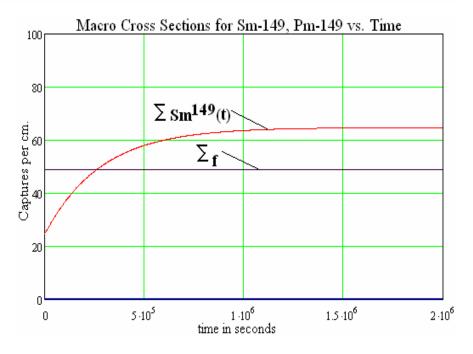
$$dPm/dt = \gamma_{Nd} \, \boldsymbol{\varphi}_{th} \, \boldsymbol{\Sigma}_{f-th} - \boldsymbol{\lambda}_{Pm} Pm(t)$$

$$dSm/dt = \boldsymbol{\lambda}_{Pm} Pm(t) - \boldsymbol{\varphi}_{th} \, \boldsymbol{\sigma}_{c-th} \, Sm(t)$$

• Under equilibrium conditions (constant φ_{th}):

$$dPm/dt = 0 = \gamma_{Nd} \varphi_{th} \Sigma_{f-th} - \lambda_{Pm} Pm(\infty)$$


• Thus: $Pm(\infty)=\gamma_{Nd}\,m{arphi}_{th}\,m{\Sigma}_{f ext{-}th}/\,m{\lambda}_{Pm}$ $dSm/dt=0=m{\lambda}_{Pm}P(\infty)-m{\varphi}_{th}\,m{\sigma}_{c ext{-}th}\,Sm(\infty)$


- Thus: $Sm(\infty) = \lambda_{Pm}Pm(\infty) / \varphi_{th} \sigma_{c-th}$
- Substituting in for $P(\infty)$ yields:

$$Sm(\infty) = \gamma_{Nd} \, \Sigma_{f-th} / \, \sigma_{c-th}$$

- Using: $\gamma_{\rm Nd}$ =0.011, $\Sigma_{f\text{-}th}$ = 48.7cm⁻¹, $\sigma_{c\text{-}th}$ = 5.85x10⁴barns · 10⁻²⁴cm²/barn = 5.85 x10⁻²⁰cm²
- $Sm(\infty) = 9.4 \cdot 10^{18} atoms/cm^3$

- Thermal flux: $\varphi_{th} = 10^{14}/cm^2 sec$
- $Pm(\infty) = 5.5x10^{19} \text{ atoms/cm}^3$ $Sm(\infty) = 9.4x10^{18} \text{ atoms/cm}^3$
- Thermal flux drops to: 0/cm² sec
- Pm¹⁴⁹ production ceases and begins to decay away
- Removal of Sm^{149} by neutron capture ceases, but production from Pm^{149} decay continues
- Sm^{149} eventually reaches value of ~2. $48x10^{19}$ atoms/cm³
- Sm¹⁴⁹ capture exceeds fission at ~ 75hours

Reactor Design for Xe¹³⁵, Sm¹⁴⁹

- Obviously nuclear fuel design must consider:
 - All isotopes which capture neutrons: Xe^{135} , Sm^{149} , B^{10} , etc...
 - All isotopes present in fuel that fission: U^{235} , Pu^{239} , Pu^{241} , etc...
- During extended power operation equilibrium Xe^{135} , Sm^{149} capture becomes comparable to $\Sigma_{f\text{-}th}$
- Fuel design compensates by adjusting Uranium enrichment to increase Σ_{f-th} to cope with equilibrium levels
- Fuel design *does not* provide ability to override peak Xe^{135} condition (at 11.6 hours)
- If reactor trips and cannot immediately be restarted it will require waiting 18 24 hrs for Xe^{135} to decay

Summary

- Good fission fuels have:
 - Long $T_{1/2}$,
 - Isotope Availability,
 - High σ_{f}
- Isotopes meeting these requirements include:
 - $-U^{235}$
 - $-U^{233}$
 - Pu^{239}
- Good startup neutron sources:
 - Appreciable neutron production rates
 - Isotope Availability
 - Preferably not major γ-radiation source
- Neutron sources meeting these requirements include:
 - $Pu^{239} Be^9$
 - $-Am^{241}-Be^{9}$

Summary

- Good absorbers for chain reaction control should have:
 - large neutron capture cross section,
 - high melting point,
 - material availability.
- Some good absorbers include:
 - B¹⁰ Boron Carbide
 - Liquids B¹⁰ forms: Boric Acid, Sodium Pentaborate
 - Halfnium
 - Silver-Indium-Cadmium Alloy
- Most fission products are not major neutron absorbers.
- Fission products that are major neutron absorbers and impact operation:
 - Xe^{135}
 - $-Sm^{149}$